# MOF-5: There and Back Again Outline

- 1) MOF-5: The start of a collaboration
- 2) H<sub>2</sub> and infrared: You're crazy
- 3) MOF-74: The beauty of a systematic series
- 4) CO<sub>2</sub>: Something a bit different
- 5) MOF-5 again: The story continues

# MOF-5: Zn<sub>4</sub>O(BDC)<sub>3</sub>



# **Secondary Sites**



J.L.C. Rowsell, E.C. Spencer, J. Eckert, J. Howard, and O.M. Yaghi, Science, **309**, 1350 (2005)

Phys. Rev. B 77, 224301 (2008)



Hydrogen Cycle

## **Fuel Cell Batteries**

$$2H_2 + O_2 \rightleftharpoons 2H_2O + Energy$$

• Electrolyze water using renewable energy or otherwise wasted energy





• Ideally it would all be done locally

## **Hydrogen Storage for Fuel Cells**





# **High Pressure**

350-700 bar

Liquid Hydrogen



Need a light weight "hydrogen sponge"

**Highly porous materials exist** 

Problem is hydrogen sticks either too weakly or too strongly

Need "post-it note" stickiness

Need technique to probe H<sub>2</sub> interactions





#### The atoms are neutral









## Induced dipole moment is typically weak so special technique is required to enhance signal

#### **Diffuse Reflectance Spectroscopy**

- Light bounces around within powder sample
- Very long path length enhances absorption signal





### **Diffuse Reflectance Spectroscopy: Cryostat Assembly**



Rev. Sci. Instr. 77, 093110 (2006)



## Samples are mounted in a glove-box







### **Quantum Dynamics of Adsorbed H<sub>2</sub>**

- Vibration  $E_v = (v + 1/2) v_0$  $v_0 = 4161 \text{ cm}^{-1}$  for free H<sub>2</sub>
- Rotation  $E_J = J(J+1)B_0$  $B_0 = 59 \text{ cm}^{-1}$  for free H<sub>2</sub>

1000

Translation
Center-of-mass
On the order of 150 cm<sup>-1</sup>



**Typical Spectra for H<sub>2</sub> in MOFs at 30 K** 



# **MOF-74 Isostructural Series**



Vibrational shift and binding energy?





### **Quantum Dynamics of Adsorbed H<sub>2</sub>**



#### **Translational mode energy (quantum sieving?)**



#### **Back of the Envelope Calculation**



ZPE= 3/2 has w≈200 cm-1 =>ZPE=300cm" =420K W2= 1/2 WH >ZPE, 2300K AZPE=120K e DE/KT at 77 K e 120/77 = 4.75 E=0 E<sub>b</sub> H2

### **Standard Separation Techniques**



Rae, H. K. *Selecting Heavy Water Processes*; ACS Symposium Series 68, American Chemical Society: Washington, DC1978.

## **D**<sub>2</sub> vs H<sub>2</sub> Isotherms in Fe-MOF-74



J. Am. Chem. Soc., 2013, 135, 9458

Fits are based on constrained two-site Langmuir isotherm

D<sub>2</sub> (red) consistently higher than H<sub>2</sub> (black)

**D**<sub>2</sub>/**H**<sub>2</sub> Ratio increases with decreasing temperature



Translational Frequency (cm<sup>-1</sup>)

**Dashed line shows simple back of the envelope** Solid line shows full (harmonic) thermodynamic calculation

# CO<sub>2</sub> in Different Metal MOF-74

J. Phys. Chem. C 2015, 119, 5293-5300



One Shift Two Shift Red Shift Blue Shift Phys. Rev. B 77, 224301 (2008)



# MOF-5 Again



# **Students on Our Papers**

Kelty Allen



Ross Myers



Jenny Schloss



Jesse Hopkins



Brian Burkholder



Chris Pierce







Michael Friedman







John Matters



Ben Thompson



Jocienne Nelson

