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Abstract 

 

Students of statistics should be taught the ideas and methods that are widely used in 

practice and that will help them understand the world of statistics. Today, this means 

teaching them about Bayesian methods. In this article I present ideas on teaching an 

undergraduate Bayesian course that uses Markov chain Monte Carlo and that can be a 

second course or, for strong students, a first course in statistics. 
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I INTRODUCTION  

In his recent paper on the future of statistics education, George Cobb writes of the 

importance of teaching of Bayesian thinking (Cobb 2015) and I heartily agree with his 

position that Bayesian methods can and should be taught to undergraduates.  

 

One advantage of teaching Bayes using Markov chain Monte Carlo (MCMC) is that the 

power and flexibility of “Bayes via MCMC” lets students address the following kind of 

question: Who is a better free throw shooter, Quentin Snider or Willie Cauley-Stein? It 

might seem that it is easy to answer this question by comparing sample data from each of 

these two basketball players. When I posed this question to students in my Bayesian 

course we had data from the 2014-15 season. Snider had a bad year shooting free throws, 

making only 21 of 38 (55.3%). Cauley-Stein made 79 of 128 free throws (61.7%), so he 

did better than Snider, and that would seem to settle the matter. But looking at data from 
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16 guards, including Snider, and 8 centers including Cauley-Stein, one can see that 

centers generally aren’t good free throw shooters. How can we use the data, plus a belief 

that guards might be better free throw shooters than centers, to estimate how Snider and 

Cauley-Stein will compare in the long run?  

 

My students used the data to fit a hierarchical model that has a top level with a parameter 

for overall free throw shooting performance among all players, a middle level that allows 

for guards to be systematically different from centers, and a lower level that allows 

players within a position (e.g., guards) to differ from one another. The fitted hierarchical 

model found a 79% posterior probability that Snider is more skilled than Cauley-Stein at 

shooting free throws – this despite the fact that Snider did worse than Cauley-Stein in the 

2014-15 season. It then came as no surprise to me that in the following season Snider 

shot 75% from the free throw line while Cauley-Stein made only 64.8% of his free 

throws.  

 

This example illustrates that Bayes using MCMC is flexible – well beyond what students 

see in a traditional course. Moreover, Bayes is natural: People use probability in loose, 

informal ways every day and in a sense, every student is a subjective Bayesian. Indeed, 

learning to speak is a Bayesian process (Norris, 2006; Dowman et al. 2008) as Bayes’ 

Theorem comports with a natural and fruitful way of thinking.  

 

The use of Bayesian statistics has grown considerably over the past several years. I 

looked through three years worth of articles in the Applications and Case Studies section 
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of the Journal of the American Statistical Association (issues 500 – 511, covering 

December 2012 – September 2015). More than half the articles in those issues (57 out of 

110) involved Bayesian analyses1. A recent review of clinical trials at one cancer center 

found that one-third of phase I or II drug trials used Bayesian designs and analyses 

(Biswas et al. 2009).  An increasing proportion of empirical applications using 

macroeconomic time series analysis employ Bayesian techniques, about half in recent 

years (Tallman 2014). Such work is influenced by people like Christopher Sims, who 

delivered a talk on “Why Econometrics Should Always and Everywhere be Bayesian” 

(Sims 2007) shortly before he won the Nobel Prize in economics. The growth of 

Bayesian applications is largely due to better software, particularly for implementing 

MCMC.   

 

The teaching of Bayesian methods can be done in a second course in statistics, but a 

Bayesian methods course that uses MCMC can be taught to students who have never 

taken a statistics course. Whatever the level, a modern Bayesian course should go far 

beyond simple applications of Bayes’ Theorem. I argue for a course that teaches methods 

parallel to traditional topics, such as t-tests, regression, and analysis of variance, and that 

goes beyond what can be done with traditional (frequentist) methods.  

 

In the sections that follow I present an overview of a course that I have taught twice and 

that has been taken by students with or without any formal background in statistics. I 

include details of the kinds of topics and techniques we cover.  

                                                
1 This does not include another five articles in which only Bayes’ Theorem was used. 
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II MCMC  

Computing power has made Bayesian methods accessible and has changed statistical 

practice. My course is heavily dependent on computing; indeed, the title of the course is 

“Bayesian Computation.” We use the Jags program via R to implement Markov chain 

Monte Carlo and find posterior distributions in a variety of settings. I’m using a book 

(Kruschke 2015) that requires no mathematics beyond some exposure to first-semester 

calculus, and even that is optional2. 

 

Students in my course do not become programmers; they just execute code that someone 

else has written. Moreover, the professor doesn’t need to be adept at creating code. Some 

familiarity with R is certainly helpful, but it is quite easy to use the scripts that come with 

the textbook3. Indeed, I have had a few students complain that I don’t lead them down the 

path of writing code to handle arbitrary situations; instead, I (mostly) have them make 

simple edits to existing code. To such students I plead “guilty as charged,” as there is 

only so much that I want to take on in a first course on Bayesian methods. We cover the 

Bayesian equivalents to t-tests, comparisons of proportions, regression, and ANOVA; in 

short, we cover the topics that students see from a frequentist perspective if they take my 

traditional STAT 101 course.  

                                                
2 Other books (Bolstad, 2007, Gill 2008, Albert 2009, Hoff 2009, et al.) are available that 
also do not presume much sophistication on the part of the audience. There are a number 
of books that are written at a higher level (Christensen et al. 2011, Gelman et al. 2014, 
McElreath 2016) that would challenge most undergraduates at the introductory level, but 
that might be quite suitable for students with strong backgrounds. 
3 Moreover, installing the BayesianFirstAid package in R and then changing t.test() to 
bayes.t.test(), e.g., is easy for an R user who wants to use MCMC but doesn’t want to 
work with rjags scripts. 
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Students in my Bayesian course don’t actually need to know calculus, although it helps to 

have some idea of what integration is. Likewise, they don’t need to have taken a previous 

statistics course, although it may help (or hurt?) to have seen frequentist ideas of P-values 

and confidence intervals as points of comparison when we discuss Bayes’ factors and 

highest density intervals. Many of my students have previously taken both calculus and 

statistics, but some have taken only one of those two (but at least one of the two). 

 

III A SINGLE PROPORTION  

Early in my course I introduce model building with a simple construction of the degree of 

uncertainty about a Bernoulli parameter, θ. We look at this in three ways. (1) We use a 

Beta(a,b) as the prior distribution on θ and get a posterior that is Beta(a + z, b + n – z), 

where z is the number of successes in n Bernoulli trials. I don’t prove this result about the 

posterior, but I do present the simple mathematics that shows the posterior mean as a 

weighted average of the prior mean and the data mean. (2) We use a discrete prior for θ 

that lives on grid points between 0 and 1. (3) We use MCMC.  I show these three 

approaches in parallel, noting that a discrete prior with many grid points (2) gives a good 

approximation to the theoretical result (1) and MCMC (3) gives a good approximation to 

both of these.  

 

As an example, I ask the question “What percentage of students on our campus are 

vegetarians?” and then present data from a sample of 136 students, 19 of whom are 
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vegetarians. Appendix 1 shows output from a program that takes a Beta prior plus data 

and produces a Beta posterior, along with MCMC output from a second program. 

 

Bayesian methods, in contrast to their frequentist counterparts, incorporate information 

that was available prior to the collection of the data in a clear and consistent way4.  

To explore the role of the prior, I present pre-posterior predictive analysis with the 

vegetarian data and ask the question “Is this prior sensible?” To choose a prior for the 

vegetarian parameter I specified a prior mode – I chose 0.20 as a guess of the campus-

side vegetarian proportion – and a weight – I chose 20 in answer to the question “How 

many observations is my prior worth?”  I then entered 0.20 and 20 into a program and 

saw that a Beta(4.6,15.4) matches those values. From here I generated a random binomial 

of size 25 for each of 2000 points drawn from that Beta(4.6,15.4) prior. A histogram of 

the binomial counts was consistent with my expectations, so I was comfortable with the 

Beta(4.6,15.4) prior. That is, the histogram of possible binomial counts changed the 

question “Is this a sensible prior?” into the question “Do I expect data that follow this 

kind of a distribution?” 

 

Although I discuss and use informative priors with my students, for much of the semester 

we avoid the objectivity versus subjectivity issue by using noninformative or mildly 

informative priors5. 

                                                
4 Regarding current statistical practice, about half of the JASA papers that use Bayesian 
methods use informative priors and half do not. 
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IV TWO PROPORTIONS AND HIERARCHICAL STRUCTURE 

MCMC makes it easy to use a prior that has a hierarchical structure. This is often a 

natural choice and one that tends to soften the link between subjective prior belief and the 

posterior distribution. Appendix 2 presents in more detail the opening example on free 

throw shooting among guards and centers, using a fairly simple hierarchical prior that has 

a parameter for each player, but that also allows for guards to be systematically different 

from centers. The flexibility of this model is a feature that is easily incorporated into 

Bayesian analyses. 

 

V MEANS  

The Bayesian paradigm fosters flexibility aside from the use of hierarchical models. In 

particular, when using MCMC it is not necessary to stipulate that the error term is 

Gaussian. A traditional t-test assumes a Gaussian likelihood and uses a t-distribution for 

the test statistic. In contrast, the command bayes.t.test(y, mu=30) in the R package 

BayesianFirstAid accepts a vector of data y and runs MCMC for a single mean using a t 

likelihood, with mu=30 as a null hypothesis comparison point. Allowing the data to come 

from a long-tailed distribution can render immaterial the often vexing question “What 

should I do if I think that one of the observations is an outlier?” 

 

                                                                                                                                            
5 The R package BayesianFirstAid incorporates noninformative priors for Bayesian 

analyses that mimic standard methods; for example, the prop.test() command becomes 

bayes.prop.test() and uniform priors are used on parameters. 



 8 

We rarely expect an effect to be exactly zero. Thus, Bayesian reasoning focuses on 

parameter estimation, rather than hypothesis testing. Appendix 3 shows a comparison of 

two means using either a web applet or an easily edited R script. The output gives the 

estimated difference in the means, along with a 95% credible interval for that difference. 

 

V REGRESSION  

The usual presentation of regression in an introductory course imposes the condition that 

the error term has a normal distribution. Outliers are then considered and points are either 

included or excluded from the analysis. But just as with means, in a regression model fit 

using MCMC it is easy to use a t distribution for the error term, with the degrees of 

freedom being a parameter estimated from the data. Appendix 4 details how this can be 

done in the context of a well-known regression example. 

 

VI OTHER TOPICS  

I spend some time on one-way and two-way Bayesian Analysis of Variance and I show 

an example or two of logistic regression; other professors would make other choices. 

Now that Stan is available I mention Stan and Hamiltonian Monte Carlo, but I don’t 

expect students to learn how to use Stan. 

 

I also spend time “looking under the hood,” as it were, regarding MCMC. I don’t expect 

students to become adept at coding in Jags (or BUGS or Stan), but I do want them to use 

code and to understand what MCMC is and how it works. To that end, I go beyond what 

the textbook shows (i.e., what I do is completely optional, and I would skip this if I were 
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not teaching strong students) and spend about three weeks on a unit in which I introduce 

Markov chains, with the canonical example of rain/shine and a 2x2 matrix of transition 

probabilities. I then use R to raise the transition matrix to a large power to show the 

limiting, stabilized distribution. Next, I show a chain with three states and a simple walk 

of a few dozen steps among the three states before talking about a setting with many 

states and a long chain. Then I introduce more Markov chain ideas: reducibility, 

reversibility, the ergodic property, etc. I follow that with a “proof” that the Metropolis 

algorithm works. I put proof in quotes here because I do a lot of hand-waiving leading up 

to the final step, in which I show that Metropolis uses a reversible transition process, 

which completes the “proof.” Finally, I say that Gibbs sampling is of the same spirit as 

Metropolis, but can be more efficient, etc. In summary, I try to make the MCMC 

programs that we use be not a black box, but perhaps a gray box instead. But what I 

require of students is that they manipulate these programs (R scripts) in weekly 

homework in which they need to read in data and edit the lines that specify the prior and 

the likelihood function.  

 

VIII SUMMARY  

Students should be exposed to the world of Bayesian statistics. At a minimum they 

should see an application of Bayes’ Theorem, but they should also see MCMC and fully 

Bayesian analyses of data. We have had the necessary computing power for quite a while, 

but we haven’t had easy-to-use software and textbooks that make Bayes accessible to 

undergraduates. That has recently changed, so that today a Bayesian course that teaches 
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MCMC is available to a variety of students. A Bayesian course should appear at the entry 

level of the curriculum6. 

 

The world of statistics users has moved into using Bayesian methods widely, and to good 

result. It is time for statistics educators to join in. 

 

APPENDIX 1 

Veggie %. Figure 1 shows the result of running a program called BernBetaExample.R 

after editing a few lines of the code. One needs to input the two Beta parameters plus the 

data, where “number of flips” is the number of observations in the sample and “number 

of heads” is, in our example, the number of vegetarians. 

Prior = c(4.6,15.4)       # Specify Prior as vector with the two shape parameters. 

N = 136                        # The total number of flips. 

z = 19                         # The number of heads. 

 

 

                                                
6 I recognize that curricular decisions vary greatly from place to place and I don’t mean to 
minimize the constraints that local politics can impose. Some faculty will find that the 
only feasible place to add a Bayesian course is as an upper-level elective. My main hope 
is that the course harnesses the power of MCMC. 
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Figure 1. Prior, likelihood, and posterior distribution of the percentage of vegetarians on 

campus. 

 

Figure 2 shows the result of using MCMC, running a program called Jags-Ydich-

Xnom1subj-MbernBeta-Veggie.R. The rather long program name says “I am going to use 

Jags as my MCMC engine, the response variable Y is dichotomous, the predictor X is a 

single subject nominal variable, the model is a Bernoulli likelihood with a Beta prior, and 

I’m analyzing the vegetarian data so I’m adding ‘Veggie’ at the end.” The program 

displays the posterior mode of 0.146 rather than the posterior mean of 0.145, but the user 
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has the option of asking for the mean. The only thing the user needs to specify is the 

data7, by inputting the numbers 19 and 136 in the following line: 

myData = data.frame(y = c(rep(0, 136 - 19), rep(1, 19))) 

 

 

 

 

Figure 2. Output from running MCMC with a Beta(4.6,15.4) prior and data of 19 out of 

136 students being vegetarians. The 95% highest density interval from MCMC agrees 

with the theoretical 95% HDI shown in Figure 1. 

 

Figure 3 is a histogram of 2000 binomial counts from a pre-posterior predictive analysis 

in the vegetarian setting.  

                                                
7 A uniform prior is used by default. I used a Beta(4.6, 15.4) prior when creating Figure 
2, which had no material effect on the results when compared to using a Beta(1,1) prior. 
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Figure 3. Pre-posterior predictive analysis of vegetarian question when the prior is 

Beta(4.6,15.4).   

 

APPENDIX 2 

Free Throw Shooting and Hierarchical structure. I collected data on the centers and 

guards for the teams that made it to the “Elite Eight” in the 2015 NCAA basketball 

tournament. The free throw shooting performance of guards ranged from a low of 55.3% 

to a high of 88.8% success, compared to centers who ranged from a low of 47.9% to a 

high of 77.7%. A naïve analysis might pool together all hits and misses for each position 

and compare the aggregate guard percentage (78.6%) to the aggregate center percentage 

(61.3%), as if all guards were interchangeable and all centers were interchangeable. A 
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conservative analysis might treat all players as separate, ignoring the fact that guards are 

similar to one another and centers are similar to one another.  

 

It is easy to take a middle path of fitting a hierarchical model and conducting a Bayesian 

analysis, which my students see during week six of the semester. Denote each player’s 

ability with a parameter θPlayer, let the θs for the centers come from a Beta(a1,b1) 

distribution and the θs for the guards come from a Beta(a2,b2) distribution, and let the 

parameters of the two Betas come from hyperpriors that describe prior belief about 

typical free throw shooting success. E.g., using a Beta(30,10) for the mode, ω, (where ω 

= (a-1)/(a+b-2)) and a diffuse gamma distribution on the concentration, κ, (where κ= 

a+b) says that we expect basketball players to make about 75% of their free throws, 

without specifying that guards are better than centers. The posterior distributions tell us 

that there is a 92% chance that in general guards are better free throw shooters than 

centers. Beyond that, a hierarchical model allows us to pool information among centers 

and among guards, which leads to the following comparison. Willie Cauley-Stein, a 

center, made 79 of 128 free throws, for a 61.7% success rate. Quentin Snider, a guard, 

made 21 of 38 free throws, for a 55.3% success rate. The small number of attempts by 

Snider combined with the fact that he is a guard suggests that in the long run he will do 

quite a bit better than 55.3% and we find that there is a 79% posterior probability that 

Snider is more skilled than Cauley-Stein at shooting free throws8.   

 

                                                
8 During the 2015-16 season, Snider made 45 of 60 free throws (75%) while Cauley-Stein 
made 81 of 125 free throws (64.8%). Given the Bayesian analysis above, this Snider 
advantage comes as no surprise. 
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Figure 4 is a screenshot of output comparing Snider and Cauley-Stein. The red plus sign 

shows the difference in sample proportions, but the posterior is not centered there. 

Instead, the hierarchical model produces a posterior with a mode of about 0.07, with 79% 

of the distribution above zero. 

 

Figure 4  Posterior with 95% highest density interval for the difference in free throw 

shooting abilities of Snider and Cauley-Stein. 

 

APPENDIX 3 

Comparing two populations. Myocardial blood flow (MBF) was measured for two 

groups of subjects after five minutes of bicycle exercise (Namdar et al. 2006). One group 

was given normal air to breath (“normoxia”) while the other group was given a gas 

mixture to breathe with reduced oxygen (“hypoxia”) to simulate high altitude. The data 

(ml/min/g) are 

Normoxia: 3.45, 3.09, 3.09, 2.65, 2.49, 2.33, 2.28, 2.24, 2.17, 1.34 

Hypoxia: 6.37, 5.69, 5.58, 5.27, 5.11, 4.88, 4.68, 3.50 
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We want to know what these data indicate about the difference between training at 

normal altitude (normoxia) and training at high altitude (hypoxia).  

 

One can go to the website http://sumsar.net/best_online/ and enter the data and hit the 

“Click to start!” button. Within a few seconds results appear that are based on a model of 

independent t distributions for the data.  Diffuse (non-informative) priors are used for the 

population means, the degrees of freedom, and the population standard deviations.  The 

posterior distribution of µ1 – µ2 is graphed and the mean is seen to be -2.65. The 95% 

Highest Density Interval is (-3.53, -1.73) and the probability that µ1 < µ2 is nearly 100%.  

Figure 5 is a screenshot. 

 

 

Figure 5 Screenshot of using the BEST website. 
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My students would analyze these data using an R script that accompanies the textbook. 

The student can easily choose a t likelihood rather than a normal likelihood, as this 

amounts to simply changing “y[i] ~ dnorm(…)” to  to “y[i] ~ dt(…)” within the code. But 

it isn’t even necessary to make that change, as the textbook programs include a script that 

has a t density pre-selected. 

Figure 6 is a screenshot of output from running the script with these data. 

 

Figure 6 Posterior distribution of the difference in means between hypoxia and normoxia 

groups. 

 

To get this output, I took an existing R script – downloaded from the textbook website – 

and edited three lines, stating the name of the data file, the name of the response variable, 

and the name of the predictor (group) variable: 

myDataFrame = read.csv( file="ExerciseHypoxia2.csv" ) 

yName="MBF" 

xName="Oxygen" 
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All I needed to do after that was to run the program. I might have changed the default 

comparison point from zero (“Are the two means equal?”) to something else (e.g., “Is the 

difference in means at least 3?”), and I might have changed the default, vague, prior to an 

informative prior, but those are options, not requirements. 

 

APPENDIX 4 

Regression. A well-known data set contains the winning (i.e., gold medal) men’s long 

jump distance in the Olympics and the year. Bob Beamon’s phenomenal jump in 1968 of 

8.9 meters broke the previous world record by 55 cm and results in the 1968 data point 

being an outlier. Under a frequentist analysis the 95% confidence interval for the slope of 

the regression line for predicting jump distance (Y) from year (X) is (1.12, 1.69) if all of 

the data are used but is (1.14, 1.60) if the 1968 data point is deleted. The residual 

standard error when all data are used is 0.238 but this changes to 0.191 if the 1968 data 

point is removed. During week eleven of the semester I cover Bayesian regression. 

Rather than delete the 1968 point, we conduct a Bayesian analysis that replaces the usual 

condition of normally distributed errors with the condition that Y|X has a t distribution on 

ν degrees of freedom, with ν as a random variable. This leads to fitting a Bayesian 

regression model with four parameters: the slope and intercept of the line, the standard 

deviation of the error term, and the degrees of freedom.  

 

To fit this model, I have my students use an R script called Jags-Ymet-Xmet-Mrobust-

Example.R, the name of which indicates that both the response Y and the predictor X are 

continuous (metric) and the model is robust (i.e., a t rather than a normal likelihood). 
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They need to edit the script to specify where the data are to be found and what the names 

are of the variables. This is done with the following lines, the fourth of which rescales the 

response variable to make the output easier to read: 

library(Stat2Data) 

data(LongJumpOlympics) 

myData = LongJumpOlympics 

myData$Year = (myData$Year - 1900)/100 

xName = "Year" ; yName = "Gold" 

Using the non-informative priors that are built into the script produces a 95% HDI on the 

slope of (1.13, 1.67). The posterior mode for the degrees of freedom is approximately 18 

and the posterior mode for σ is 0.212, which sits between the residual standard errors that 

the two frequentist analyses yield. 
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