Physics 110: Mechanics and Relativity Course Information Sheet

Instructors: Stephen FitzGerald: Ph: 5-8334 Office: Wright 217 or Wright Basement 016 e-mail: stephen.fitzgerald@oberlin.edu

> Jillian Scudder Ph: 5-6730 Office: Wright 212 e-mail: jillian.scudder@oberlin.edu

Dan Stinebring Ph: 5-8331 Office: Wright 211 e-mail: <u>dan.stinebring@oberlin.edu</u>

Format:

This course contains both lectures and workshops. The entire class meets for one-hour lectures held in Wright 201 on Mon, Wed, and Fri. at 9:00 a.m.

The class breaks into small groups for two-hour workshops held in Wright 107. These will consist of laboratory experiments, discussion of physics demonstration and posed problems, help with assigned homework and other teaching that does not fit well into a large group format.

By now you should have already registered for either the: Monday –Wednesday workshop from 2:30 – 4:20 p.m: Scudder Tuesday – Thursday workshop from 9:00 – 10:50 a.m: Scudder Tuesday – Thursday workshop from 11:00 – 12:50 a.m: Stinebring Tuesday – Thursday workshop from 2:30 – 4:20 p.m: Stinebring

From time to time our Friday 9:00 a.m. class will consist of informal talks given by members of the faculty to introduce you to current research topics in physics and astronomy.

Office Hours (FitzGerald)

Tuesday 11:00 - 12:00 a.m., Friday 2:30 - 3:30 p.m, or by appointment.

Course Description

This course introduces you to the laws of physics and in particular those laws that manifest themselves in our everyday lives. In the laboratory we will use common objects to try to explore these laws and observe how they work. In the classroom we will see how these laws can be used to make predictions about the world around us.

Physics 110: Mechanics and Relativity Course Information Sheet

Many laws in physics are summarized using equations. This is an extremely efficient and powerful way to present very complex ideas. However, it is totally useless method unless you understand the meaning of the equations and the language of mathematics that generated them. This will be our goal for the semester.

Textbook:

Fundamentals of physics by Halliday, Resnick, and Walker 10th edition. Earlier versions are fine although the problems at the end of each chapter may be numbered differently.

Supplemental reading:

(The following books are on reserve in the science library).
Problem solving tips and techniques
The portable TA: A physics problem solving guide by Andrew Elby
(Oversize QC32.E56 1998)
Outline of physics for engineering and science by Michael E. Browne
(QC21.2.B77 1999)
How to solve it by George Polya Mudd (QA11.P6 1973)

Physics in the everyday world

A short history of everything by Bill Bryson (Q162. B88 2003) Amusement Park Physics by Nathan A. Unterman (Oversize QC32.U57 2001) The flying circus of physics by Jearl Walker (QC32.W2 1977)

Exams:

There will be two in-class midterm exams on: Wednesday September 27th and Wednesday November 8th.

Problem Sets:

In general problem sets are handed out on Wednesday and due the following Wednesday. You are allowed to miss/drop one problem set for the semester. Do not ask for any extensions.

Grades:

1 st midterm: September 27 th	20	%
2 nd midterm: November 8 th	20	%
Final Exam Dec 13 th 2:00 – 4:00	25	%
Weekly Problem sets	20	%
Workshop Grade	15	%

DISABILITY STATEMENT:

The College makes reasonable accommodations for persons with disabilities. Students should notify the Office of Disability Services located in Peters G-27/G-28 and their instructor of any disability related needs. For more information, see <u>http://new.oberlin.edu/office/disability-services/index.dot</u>. Any student eligible for and needing academic adjustments or accommodations because of a disability is requested to speak with the professor.

Physics 110: Mechanics and Relativity Course Information Sheet

Dates	Topics	Workshop Lab
Week 1	Introduction and measurement	Estimation and
Aug. 28, 30, 1		dimensional analysis
Week 2	Kinematics in one dimension	Bouncing Ball
Sep. 6, 8		
Week 3	Vectors, motion in 2 dimension	Car/Bike Jump
Sep. 11, 13, 15	and circular motion	
Week 4	Force and motion	Carts and Forces
Sep. 18, 20, 22		
Week 5		Terminal Velocity
Sep. 25, 27, 29	1 st Midterm Exam	
Week 6	Kinetic energy and work	Carts and Energy
Oct. 2, 4, 6		
Week 7	Potential energy &	Pendulum Challenge
Oct. 9, 11, 13	conservation of energy	
Fall Recess		
Week 8	Gravitation	Bicycle gears and conservation
Oct. 23, 25, 27		of energy
Week 9	Simple Harmonic Motion	Simple Harmonic Motion
Oct. 30, 1, 3		
Week 10	Center of mass and	Car collision conservation of
Nov. 6, 8, 10	conservation of momentum	momentum
	2 nd Midterm Exam	
Week 11	Rotation	Torque, rotation and angular
Nov. 13, 15, 17		momentum
Week 12	Torque and angular	Thanksgiving
Nov. 20, 22,	momentum	
Week 13	Relativity	Relativity paradoxes
Nov. 27, 29, 1		
Week 14	Relativity	Review
Dec. 4, 6, 8		

Course Topics: A tentative list of topics and the workshop lab schedule.

HONOR CODE:

Oberlin takes the honor code seriously, and expects the same of its students. You should all be familiar with the honor code (available at

http://www.oberlin.edu/~stlife/Honor_Code/Honor_Code.html), and expect your professors to describe its application on their syllabi. In particular, it is essential that you write and sign the honor code on all work you hand in for this class. The Honor Code reads: "I affirm that I have adhered to the Honor Code on this assignment."